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ABSTRACT 
Cross-Domain Recommendation (CDR) aims to solve the data spar-
sity problem by integrating the strengths of diferent domains. 
Though researchers have proposed various CDR methods to efec-
tively transfer knowledge across domains, they fail to address the 
following key issues, i.e., (1) they cannot model high-order correla-
tions among users and items in every single domain to obtain more 
accurate representations; (2) they cannot model the correlations 
among items across diferent domains. To tackle the above issues, 
we propose a novel Intra and Inter Domain HyperGraph Convolu-
tional Network (II-HGCN) framework, which includes two main 
layers in the modeling process, i.e., the intra-domain layer and the 
inter-domain layer. In the intra-domain layer, we design a user hy-
pergraph and an item hypergraph to model high-order correlations 
inside every single domain. Thus we can address the data spar-
sity problem better and learn high-quality representations of users 
and items. In the inter-domain layer, we propose an inter-domain 
hypergraph structure to explore correlations among items from 
diferent domains based on their interactions with common users. 
Therefore we can not only transfer the knowledge of users but 
also combine embeddings of items across domains. Comprehensive 
experiments on three widely used benchmark datasets demonstrate 
that II-HGCN outperforms other state-of-the-art methods, espe-
cially when datasets are extremely sparse. 
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1 INTRODUCTION 
Data sparsity is a common problem in the Recommendation Sys-
tem (RS). Nowadays, more and more users participate in multiple 
domains (platforms) for diferent purposes, like buying books on 
Amazon’s eBook platform and watching movies on Amazon’s Prime 
Video platform. The data sparsity problem could be mitigated if one 
can transfer useful knowledge among diferent domains. Based on 
this idea, Cross-Domain Recommendation (CDR) [3] was proposed. 

Existing research on CDR has introduced diferent techniques 
to transfer knowledge across diferent domains. In the earlier stud-
ies, clustering-based [27] and variations of Matrix Factorization 
(MF)-based CDR methods [18, 32] have been proposed and achieved 
some improvements compared with single-domain recommenda-
tion methods. However, most clustering-based and MF-based CDR 
methods cannot model the nonlinear patterns in user-item interac-
tions. Thus, researchers designed many deep-learning-based CDR 
methods [7, 23, 40] to better transfer knowledge across domains 
and mine more complex user-item interactions. Though existing 
research has already proved that CDR is a reasonable way to solve 
the data sparsity problem, they overlook several key issues. 

Firstly, the data sparsity problem is not well addressed in CDR since 
essential high-order correlations among users and items have not been 
explored in every single domain. Most of the existing CDR methods 
generate user and item embeddings based on pairwise user-item 
interactions inside each domain. However, the data sparsity prob-
lem is widespread and there is a serious shortage of these pairwise 
interactions in a sparse domain, which will limit the qualities of 
the learned embeddings and may lead the negative transfer [34] 
problem to CDR. To better address the data sparsity problem inside 
every single domain, some potential high-order correlations should 
be explored. As Figure 1(a) shows, �1,�2,�3 are likely to be simi-
lar since they all interact with �1. Besides, �4,�5,�6 should have 
some similar features to �1,�2,�3 since there are direct neighbor 
relationships among them. Although these kinds of high-order cor-
relations can also be captured by some Graph Neural Networks 

449

https://doi.org/10.1145/3543507.3583402
https://doi.org/10.1145/3543507.3583402
mailto:yangyao@zhejianglab.com
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583402&domain=pdf&date_stamp=2023-04-30


WWW ’23, April 30–May 04, 2023, Austin, TX, USA Zhongxuan Han, Xiaolin Zheng, Chaochao Chen, Wenjie Cheng, and Yao Yang 

(a) High-order correlations among users 
and items inside a single domain. 

(b) Correlations among items in diferent 
domains. 

Figure 1: Motivating examples. (a) gives an example of high-
order correlations among users and items inside a single 
domain. Paths with arrow indicate the message passing pro-
cess for �1. The background circles denote the high-order 
correlations among users, and the high-order correlation 
with � = 1 is contained by that with � = 2. (b) gives an example 
of correlations among items across diferent domains. The 
items that have been interacted with by more common users 
are more similar, and similar items are shown in similar col-
ors, e.g., �� and �1 

� are more similar than �� and �2 
� .1 1 

(GNN)-based CDR methods [15, 43], the graph convolution pro-
cess is directly related to the degrees of message passing in the 
graph. For example, the degree of passing message from �6 to �1 
(�6 → �4 → �3 → �1 → �1) is so high that �6 has a very lim-
ited efect on �1 by graph convolution. Naturally, if one can link 
the users or items with high-order correlations and pass messages 
among them directly, the data sparsity problem will be mitigated. 

Secondly, the performance of CDR is always limited since existing 
CDR methods ignore the correlations among items across domains. 
The data of users and items are both limited in a sparse domain. 
However, previous methods mainly focus on learning the overlap-
ping properties of users’ preferences and ignore the correlations 
among items across diferent domains. Failing to transfer the knowl-
edge of items will lead to inaccurate representations of items, due 
to the data sparsity problem in every single domain. In fact, correla-
tions among items from diferent domains can be modeled based on 
their interactions with common users. For example, as Figure 1(b) 
shows, �1 

� and �1 
� should be similar since they have been interacted 

with by a set of common users. By introducing such correlations, 
CDR methods can learn more accurate items’ representations. 

In summary, to better address the data sparsity problem in CDR, 
there are two signifcant challenges. CH1: How to explore and 
model high-order correlations inside every single domain to better 
solve the data sparsity problem. CH2: How to discover the hidden 
correlations among items across diferent domains to address the 
data sparsity problem better. 

In order to address the above two challenges, we propose a novel 
Inter and Intra Domain HyperGraph Convolutional Network (II-
HGCN) framework in this paper. The main idea of II-HGCN is to 
enhance the performance of CDR by exploring high-order correla-
tions among users and items. Hypergraph [4] has been proposed to 
bring more fexibility in handling relationships among nodes in the 
graph structure. A hypergraph generalizes the concept of an edge 
to make it connect more than two nodes, providing a natural way to 
model complex high-order relations among users and items. To the 
best of our knowledge, we are the frst to combine the advantages 
of hypergraph with CDR to better solve the data sparsity problem. 

Our method designs two types of hypergraph structures in the 
intra-domain layer and the inter-domain layer so that both high-
order correlations inside every single domain and across domains 
can be modeled. To solve CH1, we propose a novel intra-domain 
hypergraph framework to model high-order correlations among 
users and items in every single domain. We build two separate hy-
pergraphs for users and items respectively, and here the hyperedge 
generation rules can be fexible. For instance, a hyperedge can asso-
ciate users with similar behaviors or model the similarities among 
items being interacted with by the same users. Besides, to identify 
the importance of diferent hyperedges and avoid generating re-
dundant hyperedges, we defne a novel metric HyperDegree for a 
hyperedge so that redundant hyperedges can be fltered out. To 
solve CH2, we design a novel inter-domain hypergraph framework 
to capture correlations among items across domains. Firstly, we de-
fne a novel metric HyperSimilarity to model the similarity between 
two items from diferent domains. Then for each item in a domain, 
we construct a hyperedge containing several most similar items 
from another domain so that potential relationships among items 
from diferent domains can be explored and transferred. In addi-
tion, we propose an adjusted hypergraph convolutional network to 
aggregate item embeddings in this phase. Finally, an element-wise 
attention mechanism is used to combine embeddings learned from 
the intra-domain and inter-domain processes for users and items. 

To evaluate the performance of our II-HGCN framework, we 
conduct extensive experiments on three real-world datasets. Mul-
tiple evaluation metrics demonstrate that II-HGCN outperforms 
the State-Of-The-Art (SOTA) models [7, 40] from various perspec-
tives. Furthermore, after sparsifying the dataset, we fnd that the 
improvement of II-HGCN against the SOTA models is more signif-
icant, proving that our framework can better deal with the data 
sparsity problem. 

We summarize our main contributions as follows: (1) We propose 
a novel II-HGCN framework, which can model the high-order cor-
relations among users and items to better address the data sparsity 
problem in CDR. (2) We design an intra-domain layer and an inter-
domain layer to capture high-order correlations inside every single 
domain and transfer knowledge of both users and items across 
domains. (3) We conduct extensive experiments on three real-world 
datasets, demonstrating that II-HGCN outperforms SOTA methods, 
and the improvement is more signifcant in sparser datasets. 
2 RELATED WORK 

2.1 Cross-Domain Recommendation 
CDR was proposed to solve the data sparsity problem by transfer-
ring knowledge across diferent domains [3]. Early CDR methods 
are mainly based on MF [18, 26, 29, 36] and clustering methods 
[12, 32]. For example, Collective Matrix Factorization (CMF) [36] 
utilizes multiple auxiliary matrices on users to combine users’ fea-
tures across diferent domains. While cluster-level matrix factoriza-
tion [32] uses the K-means method to explore the shared patterns 
of users and items between two domains. Though these non-deep-
learning based CDR methods have achieved better performance 
compared with single-domain recommendation methods, they can-
not model complex patterns in user-item interactions. 

Deep-learning can model user-item interactions more fexibly 
and learn better representations of users and items. Researchers 
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have proposed many deep-learning-based CDR methods [5, 7, 9, 17, 
28, 31, 40, 41]. Lm et al. [22] pointed out that users’ search modes 
play an essential role in improving the recommendation accuracy 
in CDR. Hu et al. [17] proposed a multi-task learning strategy by 
building a deep cross-connection network to transfer knowledge 
between user-item interactions across domains. DARec [40] learns 
shared user representations across domains inspired by domain 
adaptation technique. DDTCDR [28] proposes a deep dual transfer 
network to learn user embeddings jointly and combine embeddings 
from diferent domains. ETL [7] considers both the users’ preference 
for diferent domains and the domain-specifc properties, and thus 
has achieved SOTA performance. Some researchers [17, 30, 43] tend 
to incorporate content information in CDR to mitigate the data 
sparsity problem in each domain. While content information like 
attributes [3], social tags [11], and browsing or watching histories 
[24] is not always available. 

Though existing CDR methods have achieved good performance, 
they only learn representations of users and items from pairwise 
correlations, which can be severely afected by the data sparsity 
problem inside every single domain. Besides, previous methods only 
focus on learning the overlapping properties of users and ignor-
ing the correlations among items that are mostly non-overlapping 
across diferent domains. As a comparison, in this paper, we intro-
duce a framework II-HGCN to capture both high-order correlations 
inside each single domain and hidden correlations among items 
across domains to better solve the data sparsity problem. 

2.2 HyperGraph 
The hypergraph [6, 13, 21, 42] structure has been employed to 
model high-order correlations among data. Zhou et al. [42] frst 
proposed hypergraph learning and designed a propagation process 
on hypergraph structure. Hypergraph was further employed in the 
video object segmentation task [19] and the image retrieval task 
[20]. Furthermore, Uthsav et al. [8] introduced a spectral theory for 
hypergraphs with edge-dependent vertex weights by the random 
walk method. Later on, Feng et al. [10] introduced a hypergraph 
convolution operation to better exploit the high-order data correla-
tions for representation learning, which provides a more efective 
way to deal with complex correlations. 

A graph structure can naturally model user-item interactions of 
RS and some hypergraph-based recommendation methods [23, 38, 
39] have been proposed to explore implicit high-order correlations 
in RS and achieved good performance. In this paper, we design 
a hypergraph based framework to better solve the data sparsity 
problem in CDR. 

3 THE PROPOSED METHOD 
In this section, we frst give the problem formulation and then 
describe the details of our proposed II-HGCN. 

3.1 Problem Formulation 

Problem Defnition. We assume there are two domains, i.e., � 
and �, who have the same set of users U = {�1,�2, . . . ,�� } with 
N denoting the number of users. The item sets of domain � and do-
main � are I� = {�1 

�, �2 
� , . . . , �� } and I� = {�1 

�, �2 
� , . . . , � � }, where 

� �
M and T denote the number of items in each domain, respectively. 

The user-item interactions of domain � and domain � are repre-
sented by matrixs R� ∈ {0, 1}� ×� and R� ∈ {0, 1}� ×� . Usually, 
R� and R� are very sparse since users can only interact with a 
small subset of items in each domain. CDR aims to provide users 
with accurate recommendation results in a domain with the help of 
the other domain. In this paper, we do not distinguish a source or 
target domain since the recommendation process for each domain 
is performed in a unifed way. 
Representation of HyperGraph. A hypergraph can be repre-
sented by G = (V, E), where V denotes the vertex set and E 
represents the edge set. An edge can connect two or more vertices 
in a hypergraph [4]. An adjacency matrix H ∈ {0, 1}|V |× | E | is used 
to represent the connections among vertices on the hypergraph, 
where H�� = 1 indicates vertex � belongs to hyperedge � . Two 

∈ R |V |× |V | and D� ∈ R | E |× | E | are used diagonal matrices D� 
to represent the degrees of vertices and edges respectively, where 
(D� )�� = 

Í 
� ∈E H�� and (D� )�� = 

Í 
� ∈V H�� . 

Notations. We list the important notations in Appendix A. 

3.2 Overview 
In this paper, we propose a novel Intra and Inter-Domain HyperGraph 
Convolutional Network for CDR, namely II-HGCN, to better solve 
the data sparsity problem. As shown in Figure 2, the framework of 
II-HGCN is divided into four components, i.e., input layer, intra-
domain layer, inter-domain layer, and prediction layer. We generate 
the embeddings of users and items from each domain in the input 
layer, and calculate the recommendation result in the prediction 
layer. In the main modeling process, we explore the high-order 
correlations inside each domain and across domains in the rest two 
layers to solve CH1 and CH2, respectively. In the intra-domain 
layer, we model each domain’s high-order correlations to learn 
better user and item embeddings. In the inter-domain layer, we 
transfer useful knowledge of both users and items across domains 
to enhance the recommendation performance. We will describe the 
details of the intra-domain layer and the inter-domain layer in the 
following subsections. Then we will introduce the prediction layer 
and the optimization strategy. 

3.3 Intra-Domain Layer (Solving CH1) 
As shown in Figure 2, in the intra-domain layer, domain � and do-
main � share the same process to learn user and item embeddings, 
i.e., frstly building two hypergraphs for users and items respec-
tively, and then utilizing the hypergraph convolution network to 
update embeddings. For readability, we construct a common do-
main to introduce this unifed intra-domain process. We suppose 
there are � users and � items in this common domain. The user 
set is U = {�1,�2, . . . ,�� }, the item set is I = {�1, �2, . . . , �� }, and 
the rating matrix is formed as R ∈ {0, 1}� ×� . 

In the intra-domain layer, the modeling processes of users and 
items are symmetrical. Without loss of generality, we take the 
modeling process of users as an example to describe the intra-
domain layer in detail. 
3.3.1 HyperGraph Construction for Users. To solve CH1, we pro-
pose a novel hypergraph construction method to explore high-order 
correlations inside every single domain. Before presenting the de-
tails, we frst give the defnition of Item’s �-order Reachable Users 
according to [23] as follows. 
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Figure 2: The proposed framework of II-HGCN. The modeling process for domain � is shown in blue, while the modeling 
process for domain � is shown in orange. The common modeling process for combining embeddings of users is shown in gray. 
Similar users and items are shown in similar colors. 

Defnition 3.1 (Item’s �-order Reachable Users). In a user-item 
bipartite graph, � � is �-order reachable from �� if at least one of the 
direct paths between � � and �� exists � or less than � users. 

The basic idea of constructing a hypergraph for users can be 
summarized into three steps. 

Step 1, extracting an item’s �-order reachable user set as a hy-
peredge. For �� , its �-order reachable user set is termed as �� (�� ).U 

Step 2, combining �-order reachable user sets for all items into a �-
order user hypergroup H� = {�� (�� ) |�� ∈ I}, where H� denotesU U U 
the �-order user hypergroup. The matrix form of constructing H� 

U
is as follows: 

H� = R · ���(1, ��� (R� · R, � − 1)), (1)U 

where ��� (R, �) is the function that calculates the � power of a 
matrix R, ���(�, R) is the function that replace all elements bigger 
than � in matrix R with � , and · denotes the matrix multiplication. 

Step 3, aggregrating all �-order user hypergroups for � = 1, 2, . . . , ������ 
to generate the user hypergraph. ������ indicates the furthest reach-
able users we consider for each item. In this paper, we use a simple 
concatenation operation | | to aggregate all hypergroups: 

HU = H1 | |H2 | | . . . | |H������ . (2)U U U 

We give an example in Appendix B.1 to show the hypergraph 
construction rule in the intra-domain layer. 

However, the above method simply extracts all items’ �-order 
reachable users to construct hypergroups, but no consideration is 
given to whether every hyperedge is useful. For some users who 
have interacted with many items (active users), their embeddings 
can be well learned just based on the neighbors in close proximity. 
In this case, some noise will be added to these active users by 
including redundant hyperedges. To avoid such negative efects, 
we aim to remove redundant hyperedges so that on the one hand, 
more high-order correlations can be explored for less active users, 
and on the other hand, active users can be less afected. 

Firstly, to evaluate the importance of a hyperedge, we defne Hy-
perDegree, a novel metric for a hyperedge by adding up all vertices’ 

degrees in this hyperedge. Note that a hyperedge with a big hyper-
degree means it has already contained some active users (its higher-
order reachable users maybe redundant). The matrix form of calcu-
lating hyperdegrees for �-order user hypergroup D� ∈ {0, 1}� ×� 

U 
is D� = � (H� ⊙ (D� · 1)), where ⊙ is the matrix element-wise U U U� 

multiplication, 1 ∈ {1}� ×� is a matrix with all elements being 1, 
D� indicates the vertex degree matrix of H� , and � (R) denotesU� U 

the operation that converts a matrix R ∈ R� ×� into a diagonal 
matrix R ∈ R� ×� by summing up all elements in each column and 
storing the results in diagonal positions. 

Secondly, to evaluate whether each hyperedge should be added 
to the �-order hypergroup, we sum up the hyperdegrees of each 
hyperedge in {1, 2, . . . , � − 1}-order hypergroups as: 

D̃ � = D1 + D2 + · · · + D� −1 , (3)U U U U 

D� where ˜ denotes the summing result and + denotes the matrix U
addition. 

Thirdly, to flter the redundant hyperedges, we calculate the me-
D� dian value �� of all values in ˜ , and then generate a diagonal U 

matrix F� ∈ {0, 1}� ×� to remove redundant hyperedges: U 

D� < �� 
(
1, if ( ˜ ) ,

�� 
U �� (F� ) = U (4)

0, otherwise. 

Finally, the adjusted hypergraph of users can be formulated as: 

HU = H1 | |H2 · F2 | | . . . | |H������ · F������ . (5)U U U U U 

Thus, only hyperedges containing some inactive users will be added 
to each hypergroup. 
3.3.2 HyperGraph Convolution for users. We design a hypergraph 
convolution network to update embeddings EU generated from 
the input layer. To distill discriminative information and model the 
correlations among users and items, we apply a shared parameter 
W� ∈ R� (� )×� (�+1) for users and items in each convolution layer, 
where � (�) indicates the output embedding size of layer � . The 
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matrix form of the hypergraph convolution process for users is as 
follows: 

E� U
+1 = � (D−1/2HU DU� 

H� 
U D

−1/2E� U W
� + E� U), (6)U� U� 

where DU� 
∈ R� ×� and DU� 

∈ R� ×� are vertex and hyperedge 
degrees of the user hypergraph, and � is the activation function. 
We add the resnet-like skip connection to allow the model simulta-
neously considers both its original features and features aggregated 
from the hypergraph. 

The modeling process for items is similar to which of users and 
we show the details in Appendix B.2. Based on the unifed intra-
domain layer framework, we can learn high-quality representations 
(E� , E� ), (E� , E� ) of users and items in domain � and domain U� I� U� I� 
� for the further inter-domain process. By addressing the strengths 
of hypergraph, we can explore high-order correlations inside ev-
ery single domain and solve the data sparsity problem better, as 
specifed in CH1. 

3.4 Inter-Domain Layer (Solving CH2) 
In this section, we will introduce how to combine the features of 
users and items between domain � and domain � who share the 
same set of users. As the modeling process of domain � and domain 
� is symmetrical, we take domain � as an example to describe the 
inter-domain layer in detail. The learning process of domain � is 
shown in Appendix B.3. 

As shown in Fig. 2, the embedding combination processes of 
users and items are separate and distinct. Firstly, we will introduce 
the embedding combination process of users, and then we will 
describe how to combine embeddings of items by exploring high-
order correlations among items across domains. 

3.4.1 Combine Embeddings of Users. Since users are overlapping 
across domains and we want to identify the diferent proportions 
of features learned from diferent domains, we use an element-wise 
attention mechanism [43] to combine the user embeddings learned 
from domain � and domain �. Compared with the traditional at-
tention mechanism [2], the element-wise attention mechanism al-
lows more fexibility in identifying the importance of each element 
of embeddings learned from diferent domains. Given the output 
embeddings E� and E� from the �-th layer of the hypergraph U� U�

convolutional network in the intra-domain process, the combined 
embeddings of users in domain � is calculated as follows: 

E� = E� ⊙ W� + E� ˜ ⊙ (1 − W� ), (7)U� U� U� U� U� 

where W� 
U� 

∈ R� ×� (� ) is the weight matrices for the attention 
network of domain �. 

3.4.2 Combine Embeddings of Items. Diferent domains always 
contain entirely diferent items. Existing CDR methods have not 
given a good solution to model the correlations among items across 
domains. In our framework, we propose a hypergraph-based method 
to explore potential correlations among items based on their in-
teractions with common users to enhance the recommendation 
performance. We divide the embedding combination process into 
two phases: HyperGraph Construction and HyperGraph Convolution. 
HyperGraph Construction. To fnd high-order relationships 
among items in each domain, we defne the HyperSimilarity S� � 

between two items �� and �� by calculating the number of users 
� � 

who interact with both �� and � � as S� = 
Í (R� ⊛ R� ), where ⊛

� � � � ∗� ∗� Í
denotes the element-wise AND operation, indicates the opera-
tion of summing up all values in a vector, and R∗� denotes the �-th 
column of matrix R. It should be noticed that the time complexity of 
constructing S� is the same as doing matrix multiplication on ma-
trices R� and R� , which means the time consuming of calculating 
the hypersimilarity matrix is low. 

Based on the hypersimilarity matrix S� , we can construct the 
hypergraphs H� ∈ R� ×� by extracting top� most similar items 

� 
in domain � as (H�)∗� = ���� (S� , �), where ���� indicates the 

� ∗� 
function of saving top� biggest elements in a vector and replacing 
all other elements to be 0. We set the value of � to be ������ , which 
means for every item, we consider the top������ most similar items 
in the other domain. We give an example in Appendix B.4 to show 
the hypergraph construction rule in the inter-domain layer. 
HyperGraph Convolution. Based on the hypergraphs H� , we 

� 
propose an adjusted hypergraph convolution network to transfer 
knowledge of items from domain � to domain �: 

P� = � (D
H 
− 
� 
1/2H�D

H 
− 
� 
1/2E� ), (8)I� � I� 

� � � � 

∈ R� ×� where DH� and DH� ∈ R� ×� denotes the vertex and 
� � � � 

, P� hyperedge degrees of H� 
I� 

∈ R� ×� (� ) is the aggregated item 
� 

embeddings. 
To combine the features of items learned from the intra-domain 

layer and the inter-domain layer, we also use the element-wise 
attention network to combine them together: 

Ẽ� = E� ⊙ W� + P� ⊙ (1 − W� ), (9)I� I� I� I� I� 

where W� 
I� 
∈ R� ×� (� ) is the trainable parameter for the �-th layer 

of the element-wise attention network for items. 
Suppose the number of layers of the hypergraph convolution 

network in the intra-domain process is �, we can generate the fnal 
embeddings of users and items in domain � as: 

Ẽ U� 
= Ẽ1 | |Ẽ2 | | . . . | |Ẽ � , Ẽ I� 

= Ẽ1 | |Ẽ2 | | . . . | |Ẽ � , (10)U� U� U� I� I� I� 

where ˜ and ˜ denote the combined embeddings. EU� 
EI� 

Through the modeling process of the inter-domain layer, we 
can transfer knowledge of both users and items across diferent 
domains, so that we can address the CH2 and solve the data sparsity 
problem better. 

3.5 Prediction Layer and Optimization Strategy 

Prediction Layer. After generating fnal embeddings of users and 
items in each domain, we use the cosine similarity to decide the 

R� possibility ˆ of whether � � will interact with ��:
� � � � 

(Ẽ U� 
)
� · (Ẽ I� 

) 
� 

= . (11)� �R̂� 

| | (Ẽ U� 
) | | | | (Ẽ I� 

) | | 
� � 

R� The possibility ˆ of whether � � will interact with � � can be 
� � � � 

calculated in the same way. 
Optimization Strategy. We choose the binary cross-entropy loss 
to optimize our model [35]. Taking domain �’s loss function L� as 
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an example: ∑ 
R� R� R� L� = � � log ˆ � � + (1 − R� � 

� ) (1 − log ˆ � � ) . (12)
� � ∈U�,�

� ∈I� � � 

Similarly, we can obtain the loss function L� for domain �. We 
sum up them to get the total loss function for optimization: L = 
LA + LB . 

4 EXPERIMENTS AND ANALYSIS 
To fully evaluate the proposed II-HGCN framework, we conduct ex-
tensive experiments on three real-world datasets to answer the fol-
lowing questions: Q1: How does our II-HGCN outperform the state-
of-the-art single-domain models? Q2: How does our II-HGCN per-
form compared with the state-of-the-art CDR models? Q3: Can 
our II-HGCN address the data sparsity problem better than other 
CDR models? Q4: How do combining embeddings of users and 
combining embeddings of items across domains contribute to per-
formance improvement? Q5: How do important hyperparameters 
afect II-HGCN? 
4.1 Dataset and Experimental Settings 
Dataset Description. We choose three domains from the Amazon 
dataset1: Movies and TV (Movie), Books (Book), CDs and Vinyl 
(Music) to evaluate the performance of our proposed II-HGCN. 
These three domains are benchmarks for CDR and have been widely 
used in recent work [7, 17, 40]. We preprocess these domains as 
follows to construct experimental datasets for CDR. Firstly, since 
the user-item interaction information in these three domains is 
basically ratings ranging from 1 to 5, we convert the ratings of 3, 4, 
and 5 as positive samples and others including non-rating items as 
negative samples [17]. Next, following [7, 17, 40], we combine each 
of the two domains to obtain Movie & Book, Movie & Music, 
and Music & Book as our experimental cross-domain datasets, 
where each domain pairs share the same set of users. Then, for 
each experimental dataset, we flter users and items whose total 
number of interactions in two domains is less than 5 [7]. As shown 
in Table 4 in Appendix C.1, we can fnd that both domains for each 
dataset are still extremely sparse, with at least 99.86% interactions 
being unobserved. The severe data sparsity problem brings a great 
challenge to existing CDR methods. 
Evaluation Protocols. Firstly, we split each experimental dataset 
into the train set, the validation set, and the test set. Following 
[7, 16, 17], we utilize leave-one-out (LOO) to do the dataset splitting 
process. In detail, for each user, we randomly select two items from 
the positive samples, one as the validation item and the other one 
as the test item. After it, the remaining items are all considered as 
train items. Secondly, we train and evaluate each model as follows. 
Following [7, 16, 17], we randomly sample 99 items from negative 
samples for each user and then evaluate how recommendation 
models can rank the validation and the test item against these 
negative items. During the training process, we save the model 
with the best performance on the validation set. Finally, we perform 
testing with the saved model. In order to comprehensively evaluate 
the performance of each model, we adopt three widely used metrics 
[7, 17], i.e., Hit Ratio (HR), Normalized Discounted Cumulative 
Gain (NDCG), and Mean Reciprocal Rank (MRR). A higher value 

1http://jmcauley.ucsd.edu/data/amazon/ 

means a better recommendation performance for all these three 
metrics and the predicted ranking cut-of is set as top� = 5, 10 [7]. 
Baselines. We compare our II-HGCN with seven baselines, in-
cluding single-domain methods (PMF, NCF, and NGCF) and cross-
domain methods (CoNet, DDTCDR, DARec, and ETL): (1) PMF [33]: 
Probabilistic matrix factorization is a classic factorization-based 
method for single-domain recommendation. (2) NCF [16]: Neural 
network-based collaborative fltering replaces the inner product 
with a neural architecture that can learn an arbitrary function from 
data. (3) NGCF [37]: Neural graph collaborative fltering exploits 
the user-item graph structure by propagating embeddings on it. 
Note that NGCF also considers the high-order connectivity in an 
item-user bipartite graph. (4) CoNet [17]: CoNet proposes a mod-
ifed cross-stitch neural network to transfer knowledge between 
two domains. (5) DDTCDR [28]: DDTCDR transfers knowledge 
across two domains by designing a deep dual transfer network. 
(6) DARec [40]: DARec learns shared user representations across 
diferent domains based on the domain adaptation technique. (7) 
ETL [7]: ETL is a recent state-of-the-art CDR model that captures 
both the overlapping and domain-specifc properties to adopt equiv-
alent transformations across two domains. 

Besides, we also do ablation experiments to explore the infuence 
of the intra-domain layer and the inter-domain layer for II-HGCN: 
(1) II-HGCN-S indicates the model with only the intra-domain 
layer, which is a type of single-domain method. (2) II-HGCN-U 
denotes the model which only combines the embeddings of users 
across two domains in the inter-domain layer. (3) II-HGCN-I de-
notes the model which only combines the embeddings of items 
across two domains in the inter-domain layer. 
Parameter Settings. For a fair comparison, the batch size is set to 
256 for all methods. Besides, we use the Adam optimizer [25] with 
the learning rate as 0.001 to optimize all models, and the Xavier 
initializer [14] to initialize all models’ parameters. To ensure the 
convergence for all models, we set the number of training epochs 
to 300. We optimize the unique parameters of all baseline models to 
get better performance. For II-HGCN, we set ������ as 2 and ������ 
as 5 based on the experiments of hyperparameters. The number 
of layers of the hypergraph convolutional network in the intra-
domain layer is set to 2 and the embedding size is set to 128. All 
activation functions in II-HGCN are ReLU [1]. 

4.2 Overall Comparison (RQ1, RQ2) 
To answer Q1 and Q2, we conduct experiments on three exper-
imental datasets to compare the performance of II-HGCN with 
single-domain methods and cross-domain methods. The results 
are reported in Table 1, and Table 5 in Appendix C.2. Improv. is 
calculated compared with the most competitive baseline. 
To answer Q1. In all these three experimental datasets, cross-
domain methods generally outperform the single-domain meth-
ods, indicating the importance of transferring knowledge across 
domains in recommendation. This is because these datasets are 
extremely sparse, and CDR can combine each domain’s strengths 
to mitigate the data sparsity problem. 

Comparing the performance of II-HGCN with single-domain 
methods, generally, our II-HGCN framework signifcantly outper-
forms all single-domain models. In each dataset, II-HGCN-S with 
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Table 1: Experiment on Movie & Book Dataset 
Movie & Book 

topK topK = 5 topK = 10 
Domain Movie Book Movie Book 
Metrics HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR 
PMF 0.3889 0.2771 0.2402 0.3057 0.2214 0.1936 0.5218 0.3200 0.2579 0.4100 0.2550 0.2075 
NCF 0.4320 0.3062 0.2779 0.3756 0.2759 0.2434 0.5498 0.3474 0.2848 0.4838 0.3113 0.2580 
NGCF 0.4275 0.2993 0.2672 0.3685 0.2702 0.2418 0.5544 0.3496 0.2851 0.4903 0.3196 0.2608 
CoNet 0.3846 0.2686 0.2304 0.3084 0.2167 0.1866 0.5206 0.3125 0.2485 0.4370 0.2581 0.2036 
DDTCDR 0.3968 0.2670 0.2309 0.2979 0.2042 0.1766 0.5593 0.3298 0.2585 0.4439 0.2615 0.2119 
DARec 0.4590 0.3270 0.2834 0.4196 0.2839 0.2494 0.6008 0.3729 0.3023 0.5368 0.3350 0.2962 
ETL 0.4953* 0.3687* 0.3267* 0.4963* 0.3830* 0.3456* 0.6253* 0.4108* 0.3440* 0.6179* 0.4223* 0.3617* 
II-HGCN-S 0.4552 0.3251 0.2812 0.4386 0.3339 0.2995 0.5717 0.3527 0.2910 0.5522 0.3630 0.3260 
II-HGCN-I 0.4811 0.3628 0.3246 0.4906 0.3756 0.3477 0.6051 0.3942 0.3513 0.6085 0.4104 0.3820 
II-HGCN-U 0.5035 0.3756 0.3456 0.5151 0.3967 0.3509 0.6286 0.4171 0.3626 0.6261 0.4254 0.3870 
II-HGCN 0.5298 0.3921 0.3472 0.5328 0.4218 0.3852 0.6544 0.4361 0.3654 0.6346 0.4579 0.4009 
Improv. 6.97% 6.35% 6.27% 7.35% 10.13% 11.46% 4.65% 6.16% 6.22% 2.70% 8.43% 10.84% 
Note that the results marked with * are the best performing baselines. 

Table 2: Experimental results on sparse dataset for domain Music & Book 
Music & Book 

Domain Music Book 
Sparse Ratio 0 10% 20% 30% 40% 50% 0 10% 20% 30% 40% 50% 

HR@5 
ETL 
II-HGCN 

0.4638 
0.5008 

0.4330 
0.4740 

0.4026 0.3746 
0.4477 0.4219 

0.3295 
0.3913 

0.2712 
0.3489 

0.4594 
0.4762 

0.4315 
0.4516 

0.4031 0.3764 
0.4253 0.4033 

0.3357 
0.3707 

0.2773 
0.3531 

Improv. 7.98% 9.47% 11.20% 12.63% 18.76% 28.65% 3.66% 4.66% 5.51% 7.15% 10.43% 27.34% 

NDCG@5 
ETL 
II-HGCN 

0.3572 
0.3839 

0.3320 
0.3663 

0.3010 0.2814 
0.3391 0.3198 

0.2479 
0.2980 

0.1984 
0.2776 

0.3587 
0.3771 

0.3353 
0.3571 

0.3094 0.2842 
0.3312 0.3145 

0.2538 
0.2893 

0.1890 
0.2556 

Improv. 7.47% 10.33% 12.66% 13.65% 20.21% 39.92% 5.13% 6.50% 7.05% 10.66% 13.99% 35.24% 

MRR@5 
ETL 
II-HGCN 

0.3225 
0.3457 

0.2985 
0.3294 

0.2733 0.2504 
0.3038 0.2806 

0.2195 
0.2643 

0.1764 
0.2451 

0.3203 
0.3435 

0.3028 
0.3256 

0.2777 0.2534 
0.3004 0.2828 

0.2239 
0.2597 

0.1634 
0.2369 

Improv. 7.19% 10.35% 11.16% 12.06% 20.41% 38.95% 7.24% 7.53% 8.17% 11.60% 15.99% 44.98% 

HR@10 
ETL 
II-HGCN 

0.5867 
0.6190 

0.5548 
0.5917 

0.5270 0.4943 
0.5684 0.5422 

0.4452 
0.5188 

0.3737 
0.4807 

0.5728 
0.5955 

0.5463 
0.5691 

0.5195 0.4909 
0.5434 0.5261 

0.4472 
0.4858 

0.3836 
0.4417 

Improv. 5.51% 6.65% 7.86% 9.69% 16.53% 28.63% 3.96% 4.17% 4.60% 7.17% 8.63% 15.15% 

NDCG@10 
ETL 
II-HGCN 

0.3972 
0.4239 

0.3710 
0.4052 

0.3412 0.3199 
0.3786 0.3556 

0.2837 
0.3368 

0.2314 
0.3145 

0.3954 
0.4221 

0.3714 
0.3981 

0.3455 0.3208 
0.3735 0.3566 

0.2898 
0.3343 

0.2242 
0.2957 

Improv. 6.72% 9.22% 10.96% 11.16% 18.72% 35.91% 6.75% 7.19% 8.10% 11.16% 15.36% 31.89% 

MRR@10 
ETL 
II-HGCN 

0.3390 
0.3629 

0.3145 
0.3454 

0.2893 0.2662 
0.3201 0.2967 

0.2341 
0.2800 

0.1898 
0.2547 

0.3357 
0.3581 

0.3177 
0.3408 

0.2925 0.2685 
0.3212 0.3001 

0.2384 
0.2755 

0.1778 
0.2413 

Improv. 7.05% 9.83% 10.65% 11.46% 19.61% 34.19% 6.67% 7.27% 9.81% 11.77% 15.56% 35.71% 

only the intra-domain layer has already got the best performance 
among all single-domain models. While II-HGCN still improves 
the performance by at least 13.83% and 14.62% for NDCG@5 and 
NDCG@10 compared with II-HGCN-S, which proves that the em-
beddings learned from a sparse domain can be optimized with the 
help of the other domain. 

Compared with NGCF which also considers high-order corre-
lations among users and items, our proposed II-HGCN-S achieves 
better performance. Since by using hypergraphs, we can model 
high-order relationships in a more fexible way. Besides, users and 
items with high-order correlations can directly pass messages to 
each other based on hyperedges instead of using other nodes as 
bridges in conventional graph structures. 
To answer Q2. II-HGCN yields consistent best performance com-
pared with all CDR methods on all datasets. In particular, II-HGCN im-
proves the strongest baseline (i.e., ETL) by 6.27% in average in terms 
of NDCG@5 and 6.11% in average in terms of NDCG@10. 

We attribute the improvement mainly to the fexible and ex-
plicit modeling of high-order correlations inside each domain and 
the ability to combine items’ embeddings across domains. Specif-
ically, (1) in the intra-domain layer, we construct user and item 
hypergraphs for each domain, respectively, to explore high-order 
relationships. Thus we can deal with the data sparsity problem 
better than other CDR methods and learn more accurate embed-
dings from each domain; (2) in the inter-domain layer, we can not 

only combine embeddings of users but also transfer knowledge of 
items across two domains. In each dataset, items are totally non-
overlapping across domains, and all listed CDR methods cannot 
model the correlations among items from diferent domains. In 
contrast, we propose a hypergraph-based method in II-HGCN to 
explore the high-order relationships among items according to their 
interactions with common users. Thus, the embeddings of items 
in each domain can be optimized with the help of the other do-
main, and we can calculate more accurate recommendation results 
compared with other CDR methods. 

Compared with ETL, II-HGCN consistently yields better per-
formance. ETL is the strongest baseline among all listed methods, 
which intends to learn the domain-specifc properties as well as 
the overlapping users’ properties. However, correlations among 
items across diferent domains are ignored by ETL. As a result, it 
can learn items’ embeddings only based on each extremely sparse 
single domain, which limits its performance. 

4.3 Experiment on Sparse Datasets (RQ3) 
To prove that our II-HGCN framework can address the data sparsity 
problem better than other CDR methods, we conduct exhaustive 
experiments on sparser datasets and the results are shown in Ta-
ble 2. We choose the Music & Book dataset for testing since the 
sparsity of these two domains is relatively similar. For each do-
main, we randomly drop diferent ratios of interactions among 
users and items. To compare the performance of diferent models 
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Figure 3: The efect of ������ and ������ on II-HGCN in the Music & Book dataset. 

as data sparsity changes, we select drop ratios (i.e., sparse ratio) in 
{10%, 20%, 30%, 40%, 50%} as Sparse Ratio indicates in Table 2. Note 
that a higher sparse ratio means a sparser dataset and the sparse 
ratio of 0 indicates the original dataset. Since ETL is the strongest 
baseline, we choose it as the comparison method. 

Overall, as the sparse ratio increases (the dataset becomes sparser), 
II-HGCN achieves greater improvement compared with ETL, which 
proves II-HGCN can better deal with the data sparsity problem. In 
particular, when we drop 50% interactions, II-HGCN improves ETL 
by as high as 39.92% and 35.24% on the music domain and the book 
domain respectively, in terms of NDCG@5. This is because ETL can 
only model the pairwise interactions among users and items. With 
the dataset becoming sparser, the loss of user-item interactions will 
lead to inaccurate representations of users and items, since relation-
ships among users and items cannot be identifed well. In addition, 
when both two domains become sparser, transferring knowledge 
across them may bring the negative transfer problem [34]. 

In contrast, II-HGCN can deal with the data sparsity problem 
better because of two reasons. Firstly, II-HGCN can explore high-
order correlations in addition to pairwise relationships inside each 
single domain. Thus II-HGCN can maintain the high-order rela-
tionships as much as possible despite the dataset becoming sparser. 
Secondly, II-HGCN can still model the potential correlations among 
items across diferent domains in the inter-domain layer so that 
the knowledge transfer process for CDR can be stable. We give an 
example in Appendix C.3 to explain why II-HGCN can maintain 
more correlations than other methods in a sparse dataset. 

4.4 Ablation Study (RQ4) 
We conduct ablation experiments to analyze the efect of combining 
embeddings of users and combining embeddings of items across 
diferent domains. Firstly, as Table 1, and Table 5 in Appendix C.2 
show, II-HGCN-S with only the intra-domain layer outperforms 
all single-domain methods, which proves that II-HGCN-S can gen-
erate more accurate embeddings in sparse domains by modeling 
high-order correlations among users and items. Besides, combining 
embeddings of only users (II-HGCN-U) or only items (II-HGCN-
I) can enhance the recommendation performance compared with 
II-HGCN-S. Combining embeddings of users across domains is nat-
ural since users’ behaviors in diferent domains can show their 
diferent features. While II-HGCN-I achieves better performance 
than II-HGCN-S proves that our inter-domain hypergraph structure 
can explore the high-order correlations among items in diferent 
domains and transfer useful knowledge of items across domains. Fi-
nally, II-HGCN achieves the best performance among these models 

with diferent combinations, illustrating that transferring knowl-
edge of items and users are both necessary for CDR. 

4.5 Impact of Hyperparameters (RQ5) 
To answer Q5, we select the Music & Book dataset to analyze the 
efect of important hyperparameters on II-HGCN. Due to space 
constraints, we only show the efect of the most important hyper-
parameters of our model: ������ and ������ which infuence the hy-
pergraph structure of the intra-domain layer and the inter-domain 
layer. Their efect is depicted in Figure 3. 
Efect of ������ . Accroding to Fig. 3, all metrics peak at ������ = 2 in 
both domains. When ������ = 1, the hypergraph of the intra-domain 
layer degrades to the conventional graph structure. II-HGCN with 
������ = 2 outperforms that with ������ = 1, because some solid 
high-order correlations among users and items can be explored and 
modeled, which compensates for the data sparsity problem in each 
single domain. However, the performance of II-HGCN becomes 
worse as ������ further increases. The reason is that with higher-
order hypergroups being added to the hypergraph in the intra-
domain layer, some users or items with little correlations will also be 
connected in a hyperedge. Considering such too weak correlations 
will bring some noise to the modeling process. 
Efect of ������ . According to Fig. 3, our II-HGCN framework is 
insensitive to this hyperparameter. Though all metrics peak at 
������ = 5, the overall fuctuation is very limited. The reason is 
that we extract top������ similar items from another domain to 
construct a hyperedge for each target item. In each hyperedge, 
an item’s weight is proportional to its hypersimilarity with the 
target item. Thus, the most similar items always have the greatest 
impact on the target item. With ������ increases, some less similar 
items will also be added to the hyperedge, but they do not have a 
signifcant efect on the target item because of their small weights. 

5 CONCLUSION 
In this paper, we propose an Intra and Inter Domain HyperGraph 
Convolutional Network for Cross-Domain Recommendation, called 
II-HGCN, to solve the data sparsity problem. We design a novel 
intra-domain hypergraph structure to explore the high-order cor-
relations in each sparse domain to generate more accurate em-
beddings. In addition, we also propose a hypergraph-based inter-
domain framework to not only combine features of users but also 
transfer the knowledge of items across diferent domains. Compre-
hensive experiments show that our II-HGCN framework outper-
forms the state-of-the-art CDR methods and can achieve more sig-
nifcant improvement in sparser datasets, proving that our method 
can better deal with the data sparsity problem. 
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(a) example of intra-domain layer (b) example of inter-domain layer 

Figure 4: (a) and (b) show examples of the hypergraph con-
struction in the intra-domain layer and the inter-domain 
layer 

Table 3: Notations of this paper 
Notation Description 
Notations throughout the entire process 
U 
� and � 
I� and I� 

� 
� 
� 
R� and R� 

G = (V, E) 
H 

the user set in domain � and domain � 
two diferent domains 
the item sets in domain � and domain � 
the number of users 
the number of items in domain � 
the number of items in domain � 
the user-item interaction matrices in domain � and domain 
� 
the representation of a hypergraph 
the adjacency matrix of a hypergraph 

Notations throughout the intra-domain process 
E� 
U and EI 

� 

H� 
U and H� 

I 
HU and HI 
D� 
U and D� 

I 

DU� and DU� 

DI� and DI� 

and EI� EU� 

and EI� EU� 

E� U and E� I 

the �-order reachable user set and item set 
the �-order user hypergroup and item hypergroup 
the user hypergraph and item hypergraph 
the hyperdegree matrices of hyperedges in �-order hyper-
groups for users and items 
the vertex degrees matrix and the hyperedge degrees matrix 
of the user hypergraph 
the vertex degrees matrix and the hyperedge degrees matrix 
of the item hypergraph 
embeddings of users and items generated from the input layer 
for domain �. 
embeddings of users and items generated from the input layer 
for domain �. 
the output user embeddings and item embeddings from the 
�-th layer of the hypergraph convolution network 

Notations throughout the inter-domain process 
S� and S� 

H� 
S and H� 

S 

P� and P� I� I� 

Ẽ� E� and ˜ U� U� 

Ẽ� E� and ˜ I� I� 

˜ and ˜EU� EU� 

˜ and ˜EI� EI� 

the hypersimilarity matrices for items in domain � and do-
main � 
the hypergraphs constructed for items in domain � and do-
main � 
the aggregated embeddings for items in domain � and domain 
� obtained from hypergraph convolutional network in the 
inter-domain process 
the �-th layer combined embeddings of users obtained by 
element-wise mechanism. 
the �-th layer combined embeddings of items obtained by 
element-wise mechanism. 
the fnal combined embeddings of users in domain � and 
domain � 
the fnal combined embeddings of items in domain � and 
domain � 

Table 4: The statistics of experimental datasets 
Dataset Users Domain Items Interactions Density 

Movie & Book 29,476 
Movie 24,091 591,258 0.08% 
Book 41,884 579,131 0.05% 

Movie & Music 15,914 
Movie 17,794 416,228 0.14% 
Music 20,058 280,398 0.09% 

Music & Book 16,267 
Music 18,467 233,251 0.08% 
Book 23,988 291,325 0.07% 

Zhongxuan Han, Xiaolin Zheng, Chaochao Chen, Wenjie Cheng, and Yao Yang 

A NOTATIONS 
For clearly describe the details of II-HGCN, we list the notations 
throughout the entire process, the intra-domain process and the 
inter-domain process in Table 3. 

B MORE MODELING DETAILS 

B.1 Example of The Hypergraph Construction 
in The Intra-Domain Layer 

We give an example of the hypergraph construction in the intra-
domain layer in Figure 4(a). Each column in H1 and H2 represents U U
a hyperedge containing several users. �2 and �4 are 1-order reach-
able users for �� , thus their values are set to 1 in the �-th column 
of H1 . Note that (� − 1)-order reachable users are also included U
in the �-order reachable user set for an item, and thus the values 
of �2 and �4 are also set to 1 in addition to �1 and �5 in the �-th 
column of H2 .U 

B.2 Modeling Process of Items in The 
Intra-Domain Layer 

HyperGraph Construction for Items. Firstly we give the defni-
tion of User’s �-order Reachable Items as follows: 

Defnition B.1 (User’s �-order Reachable Items). In a user-item 
bipartite graph, � � is �-order reachable from �� if at least one of the 
direct paths between � � and �� exist � or less than � items. 

Then the �-order item hypergroup H� ∈ {0, 1}� ×� can be I
formulated as: 

H� = R� · ���(1, ��� (R · R� , � − 1)). (13)I 
Finally, the item hypergraph can be constructed as: 

HI = H1 | |H2 · F2 | | . . . | |H������ · F������ , (14)I I I I I 

where F� ∈ {0, 1}� ×� can be calculated in the same way as which I
of users. 
HyperGraph Convolution. Embeddings of items can be updated 
based on the hypergraph constructed above: 

E� I
+1 = � (D−I� 

1/2HI DI� 
H� 
I D

−
I� 

1/2E� I W
� + E� I). (15) 

B.3 Modeling Process of Domain B in The 
Inter-Domain Layer 

Combine Embeddings of Users. We also use the element-wise 
attention mechanism to transfer knowledge of users from domain 
� to domain �: 

Ẽ� = E� ⊙ W� + E� ⊙ (1 − W� ). (16)U� U� U� U� U� 

Combine Embeddings of Items. For domain �, we frstly con-
struct the hypersimilarity matrix S� ∈ R� ×� as S� = 

Í (R� ⊛R� ).
� � ∗� ∗� 

∈ R� ×� Then we can calculate the hypergraph H� as (H� )∗� = 
� � 

���� (S� , �) . Based on the hypergraph, we use an adjusted hyper-∗�
graph convolution network to transfer knowledge of items from 
domain � to domain �: 

P� = � (D
H 
−1 
�

/2H� D
H 
−1 
�

/2E� ) . (17)I� � I� 
� � � � 
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Table 5: Experiment on Movie & Music and Music & Book datasets 
Movie & Music 

topK topK = 5 topK = 10 
Domain Movie Music Movie Music 
Metrics HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR 
PMF 0.3797 0.2771 0.2433 0.3611 0.2677 0.2369 0.4991 0.3144 0.2586 0.4672 0.3020 0.2510 
NCF 0.4171 0.3012 0.2630 0.4354 0.3210 0.2835 0.5482 0.3335 0.2803 0.5433 0.3587 0.2990 
NGCF 0.4177 0.3089 0.2664 0.4234 0.3042 0.2651 0.5576 0.3443 0.2852 0.5557 0.3464 0.2826 
CoNet 0.3763 0.2618 0.2241 0.3736 0.2576 0.2194 0.5185 0.3077 0.2430 0.5173 0.3039 0.2385 
DDTCDR 0.3943 0.2736 0.2405 0.3975 0.2703 0.2216 0.5104 0.3141 0.2571 0.4969 0.2956 0.2261 
DARec 0.4468 0.3199 0.2786 0.4521 0.3446 0.2867 0.5559 0.3351 0.2672 0.5879 0.3874 0.3238 
ETL 0.4844* 0.3629* 0.3217* 0.5183* 0.3992* 0.3596* 0.6247* 0.4066* 0.3398* 0.6479* 0.4410* 0.3769* 
II-HGCN-S 0.4303 0.3283 0.2789 0.4502 0.3381 0.2979 0.5542 0.3639 0.2977 0.6092 0.3926 0.3163 
II-HGCN-I 0.4790 0.3584 0.3050 0.5187 0.3889 0.3564 0.6018 0.3835 0.3236 0.6473 0.4332 0.3645 
II-HGCN-U 0.4906 0.3694 0.3161 0.5300 0.4032 0.3650 0.6173 0.3961 0.3254 0.6559 0.4497 0.3701 
II-HGCN 0.5104 0.3737 0.3271 0.5528 0.4214 0.3776 0.6519 0.4171 0.3458 0.6828 0.4675 0.3996 
Improv. 5.37% 2.98% 1.68% 6.66% 5.56% 5.01% 4.35% 2.58% 1.77% 5.39% 6.01% 6.02% 

topK topK = 5 topK = 10 
Domain Music Book Music Book 
Metrics HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR 
PMF 0.3035 0.2216 0.1947 0.2949 0.2135 0.1867 0.4119 0.2566 0.2091 0.3937 0.2448 0.1996 
NCF 0.4062 0.3007 0.2658 0.3494 0.2579 0.2281 0.5236 0.3386 0.2814 0.4564 0.2926 0.2423 
NGCF 0.3665 0.2618 0.2278 0.3343 0.2374 0.2058 0.4954 0.3031 0.2448 0.4538 0.2762 0.2217 
CoNet 0.3259 0.2124 0.2016 0.3171 0.1910 0.2026 0.4517 0.2597 0.2379 0.4432 0.2317 0.2325 
DDTCDR 0.4017 0.3162 0.2781 0.3748 0.2907 0.2864 0.4969 0.3333 0.2834 0.4768 0.3268 0.2812 
DARec 0.4630* 0.3497 0.3251* 0.4438 0.3391 0.2984 0.5727 0.3807 0.3219 0.5538 0.3776 0.3243 
ETL 0.4628 0.3572* 0.3225 0.4594* 0.3587* 0.3203* 0.5867* 0.3972* 0.3390* 0.5728* 0.3954* 0.3357* 
II-HGCN-S 0.4379 0.3255 0.2900 0.4050 0.3020 0.2682 0.5618 0.3600 0.2978 0.5293 0.3424 0.2750 
II-HGCN-I 0.4754 0.3548 0.3151 0.4486 0.3470 0.3070 0.6166 0.4075 0.3357 0.5671 0.3948 0.3324 
II-HGCN-U 0.4806 0.3662 0.3284 0.4639 0.3474 0.3154 0.6235 0.4159 0.3448 0.5773 0.4031 0.3407 
II-HGCN 0.5008 0.3839 0.3457 0.4762 0.3771 0.3435 0.6190 0.4239 0.3629 0.5955 0.4221 0.3581 
Improv. 8.16% 7.47% 6.33% 3.66% 5.13% 7.24% 5.51% 6.72% 7.05% 3.96% 6.75% 6.67% 

Music & Book 

Note that the results marked with * are the best performing baselines. 

(a) The original dataset. (b) The dataset after sparsifying. 

Figure 5: (a) and (b) show examples of the correlations among 
users and items before and afer a dataset becomes sparser. 

The embeddings learned from the intra-domain layer and the inter-
domain layer are also combined by the element-wise attention 
mechanism: 

E� = E� ⊙ W� + P� ˜ ⊙ (1 − W� ). (18)I� I� I� I� I� 

Finally, we can generate the fnal embeddings of users and items of 
domain �: 

˜ = Ẽ1 | |Ẽ2 | | . . . | |Ẽ � , ˜ = Ẽ1 | |Ẽ2 | | . . . | |Ẽ � . (19)EU� U� U� U� 
EI� I� I� I� 

B.4 Example of The Hypergraph Construction 
in The Inter-Domain Layer 

Figure 4(b) shows the construction example of H� , where we as-
� 

sume ������ = 3. For example, there are three users who interact 
with both ��

� and �2 
� , thus the hypersimilarity of �2 

� and ��
� is 3. 

By extracting top3 most similar items �2 
�, �3 

� , and �5 
� , we can con-

struct the �-th hyperedge in H� . Then the embedding of �� will be 
� � 

updated based on this hyperedge. 

C MORE EXPERIMENTAL DETAILS 

C.1 The Statistics of Experimental Datasets 
We list the statistics of experimental datasets in Table 4. 

C.2 Experimental Results on Movie & Music 
and Music & Book Dataset 

We list the experiment results on Movie & Music and Music & Book 
datasets in Table 5. 

C.3 Example of Why II-HGCN Can Deal with 
The Data Sparsity Problem Better 

We give an example in Figure 5 to show why II-HGCN can perform 
better than other methods in a sparse dataset. Solid lines indicate 
the pairwise user-item interactions and the dotted line indicates 
the hyperedge. In this example, when the dataset becomes sparser, 
the degree of message passing between �1 and �4 becomes so high 
that the correlation between these two users is nearly destroyed 
in conventional pairwise relationships. However, the high-order 
correlations among �1, �2, �3, and �4 can still be maintained since 
they are included in 2-order reachable user set of �2. Thus, when the 
dataset becomes sparser, II-HGCN can maintain more correlations 
among users and items, compared with traditional CDR methods 
which based on pairwise user-item interactions. 
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